在n(n>=2)个点的集合S中寻找最近点对及最近距离(距离用欧几里得距离度量)。
分治算法求解
- |S| <= 2:直接计算两点距离
- |S| == 3:三个点中最近的两点距离
- |S| > 3:
- 根据点的x值和y值对S中的点排序
- 划分集合S为SL和SR,|SL| == |SR|,划分线为L
- 分别在SL和SR中递归求解子问题,得到两个最小距离dl和dr,令d = min(dl, dr)
- 将 [L-d, L+d] 内的点以y值排序,对于每一个点(x‘, y’)找出y值在 [y‘-d, y’+d] 内接下来的7个点,计算距离为d’
- 如果d’ < d,令d = d’,返回d
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 | using namespace std; |
7 | |
8 | // 二维点Point, x, y范围为[-100, 100] |
9 | typedef struct Point { float x, y; } Point; |
10 | |
11 | // 随机初始化points数组中的二维点 |
12 | void InitPoints(Point *points, int length) { |
13 | srand(unsigned(time(NULL))); // 设置随机种子 |
14 | for(int i=0; i<length; i++) { |
15 | points[i].x = (rand()%20000) / 100.0 - 100; // 调整rand(),使得横纵坐标范围为[-100,100] |
16 | points[i].y = (rand()%20000) / 100.0 - 100; |
17 | } |
18 | } |
19 | |
20 | // 距离公式 |
21 | float Distance(Point a, Point b) { |
22 | return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y)); |
23 | } |
24 | |
25 | // 排序规则:依照Point中的x 升序 |
26 | bool CmpX(Point a, Point b) { |
27 | return a.x < b.x; |
28 | } |
29 | |
30 | // 分治策略求最近点对,该两点记为a, b |
31 | float ClosestPair(Point points[], int length, Point &a, Point &b) { |
32 | float distance; // points中最近两点的距离 |
33 | float d1, d2; // 分割后两子集中各自最小点对的距离 |
34 | int i=0, j=0, k=0; // 用于for循环 |
35 | Point a1, b1, a2, b2; // 分割后两子集中的最小点对 |
36 | |
37 | if(length < 2) return NO_DISTANCE; // 当子集长度小于2时定义为最大距离:不可达 |
38 | if(length == 2) { |
39 | a = points[0]; |
40 | b = points[1]; |
41 | distance = Distance(points[0], points[1]); |
42 | }else { |
43 | Point *pts1 = new Point[length]; // 开辟两个子集 |
44 | Point *pts2 = new Point[length]; |
45 | sort(points, points+length, CmpX); // 对points进行排序,排序规则为CmpX |
46 | float mid = points[(length-1)/2].x; // 排完序后的中位数 |
47 | |
48 | for(i=0; i<length/2; i++) // 左子集 |
49 | pts1[i] = points[i]; |
50 | for(int j=0,i=length/2; i<length; i++) // 右子集 |
51 | pts2[j++] = points[i]; |
52 | |
53 | d1 = ClosestPair(pts1, length/2, a1, b1); // 分治求解左子集的最近点对距离 |
54 | d2 = ClosestPair(pts2, length-length/2, a2, b2); // 分治求解右子集的最近点对距离 |
55 | if(d1 < d2) { distance = d1; a = a1; b = b1; } |
56 | else { distance = d2; a = a2; b = b2; } |
57 | |
58 | // 求解跨分割线并在δ×2δ区间内的最近点对 |
59 | Point *pts3 = new Point[length]; |
60 | for(i=0,k=0; i<length; i++) |
61 | if(abs(points[i].x-mid) <= distance) pts3[k++] = points[i]; |
62 | |
63 | for(i=0; i<k; i++) |
64 | for(j=i+1; j<=i+7&&j<k; j++) // 只需与有序的邻接的的7个点进行比较 |
65 | if(Distance(pts3[i], pts3[j]) < distance) { // 跨分割线的两点距离小于已知最小距离 |
66 | distance = Distance(pts3[i], pts3[j]); |
67 | a = pts3[i]; |
68 | b = pts3[j]; |
69 | } |
70 | } |
71 | return distance; |
72 | } |
73 | |
74 | // 显示点集 |
75 | void ShowPoints(Point points[], int length) { |
76 | for(int i=0; i<length; i++) |
77 | cout << "(" << points[i].x << ", " << points[i].y << ")" << endl; |
78 | } |
79 | |
80 | int main() { |
81 | int N; // 随机生成的点对个数 |
82 | Point a, b; // 最近点对 |
83 | float diatance; // 最近距离 |
84 | cout << "请您输入点对个数:"; |
85 | cin >> N; |
86 | if(N < 2) cout << "点个数要 >= 2 !" << endl; |
87 | else { |
88 | cout << endl << N << "个随机二维点对:" << endl; |
89 | Point *points = new Point[N]; // 点集 |
90 | InitPoints(points, N); // 随机初始化点集 |
91 | ShowPoints(points, N); // 打印点集 |
92 | // 求最近点对距离 |
93 | diatance = ClosestPair(points, N, a, b); |
94 | cout << endl << endl << "按横坐标排序后的点对:" << endl; |
95 | ShowPoints(points, N); |
96 | cout << endl << "最近点对为:" << "(" << a.x << ", " << a.y << ")和" << "(" << b.x << ", " << b.y << ")" << endl; |
97 | cout << "最近点对距离为:" << diatance << endl; |
98 | } |
99 | return 0; |
100 | } |